
Machine Learning Project Report - Neural

Granger Causality for Nonlinear Time Series

Group: Neural Fatality
Members: Vaibha Sharma (vs3br), Murugesan Ramakrishnan(mr6rx)

April 30, 2019

1 Abstract

Granger causality is an issue where there exists a causal relationship between
two or more different time series data. Complex data sets involving stock market
has higher probability of such problems since the stock price of one company
can be highly dependent on the rise and fall of its competitor. In this paper
we have delved deep to identity non-linear causality between such companies
using deep neural network. There are two main implementations done i) Feed
Forward network with Group Lasso and ii) LSTM network with Group Lasso.
Each of the above architecture is designed in such a way that the weights of
competitor stocked can be interpreted and checked if they are significant in the
final predicted value. Analyzing relations between EBay, Amazon, Apple for
predicting the stocks of Facebook we able to detect non-zero stock values of the
competitors.

Final architecture for Feed forward network contained one hidden layer with
50 units and separate weights (for Group Lasso) for different input stocks. The
final LSTM model had one hidden layer with 10 units with would taken in up
to 10 lag values to determine the final prediction.

2 Introduction

The overall objective of the project is to identify Granger Causal relationship
between different time series data X and Y. Granger causality is when a variable
X that evolves over time Granger-causes another evolving variable Y. More
precisely, it is when the prediction of Y is based on not just its own past values,
but also on the past values of X.

The current use case is to predict the stock prices for a company based on the
past values of the same and different company’s stock using non-linear methods
like Neural Network. Facebook, Amazon and E-Bay’s stock are analyzed to
identify if there is any non-linear granger causuality using both Feedforward
and LSTM methods.

1



3 Literature Review - Prior Works

Alex Tank et al’s work using Multi Layered Perceptron (MLP) and LSTMs
have analyzed how deep learning could be leveraged for Granger causality. Our
current work aims to introduce similar architecture using MLP and recurrent
neural for the use case of stock prices. Here is a brief review of their MLP
approach,

A simple two layer MLP is built with the first layer being our time series of
interest i, and another time series data j which might potentially cause causal-
ity. With a single hidden layer the next value in our time series is predicted.
Once the model is built with Residual sum of squares as the loss function, the
weight matrix for the input layer is checked. If there are non-zero weights for
the time series y, then there is a possibility of Granger causality. This method
using MLP is tried for all other possible time series using a group lasso loss
to detect the presence of Granger causality. The disadvantage with this ap-
proach is that lag value K has to be selected manually. The following equation
is used as the MLP optimization problem with a hierarchical group lasso penalty

4 Data

The data consists of stock prices (First/Last/High/Low Trade Prices) for dif-
ferent companies like Amazon, Facebook, E-Bay, Costco, Twitter, LUV among
others. The prices are recorded at a minute level every day from 2013-2018. 2018
data been used for the current Phase 2 analysis which will further be scaled to
have all the years for the final phase. One of the problems with the dataset is
that many of the company’s do not have consistent recorded price, but have a
lot of NA values in them. This has been handled in the Pre-processing step.
Here is the split of train/test for the current analysis.

Data Time Period Number of Records
Train 2018/01/02 - 2018/03/09 3000
Test 2018/03/10 - 2018/03/29 904

There is also another data source with the tweets about companies data at a
minute level. Each tweet has been associted with a sentiment which might help
in predicting the change in stock prices. Although, the tweets were not used as
a part of the input for the Phase 2, it would be implemented for the final phase.

5 Pre-processing step

5.1 NA Imputation

Each of the NA values were imputed with the average of the previous and the
next value

2



5.2 Minute Base - Window

To create a consistent time window for the stock prices, the minute data was
converted into a widow of 15 minute each where the data was aggregated to
have the maximum value found in each window. Last Trade Price was taken as
the main KPI (Key Performance Indicator) for further analysis.

5.3 Lag value calculation

Different lag value K is calculated for each stock. K=5 (lag 5) is determined
to be optimal based on the results of preliminary Machine Learning algorithms.
This is used for detecting Granger causality using Machine Learning and MLP
methods

5.4 Data Transformation

Having selected Last Trade Price as the KPI, this information is aggregated
across all the day’s data for entire 2018 for all the companies. Finally, a clean
data with all the company’s prices is generated which looks as follows,

Date Hour Minute 15 FB LastTradePrice lag0 EBAY LastTradePrice lag1
20180102 5 0 176.4 1167.92
20180102 5 15 176.4 1170
20180102 5 30 176.45 1170
20180102 5 45 176.48 1170
20180102 6 0 176.65 1170

This final prepared data is used for Machine Learning and Deep Learning
models.

6 Baseline model description

6.1 Two Stocks

Different pairs of stock prices Facebook vs. Amazon, Amazon vs. EBay, Ebay
vs. Apple are tried to see if any granger causality exists between the stocks.
A simple linear regression Model is tried to identity two factors that affect the
final prediction,
1) Number of lag values
2) See the significant coefficients (Check if the other company’s stock play a
role)

3



From the above results for Facebook vs. Ebay, 5 lag variables was found to
be effective and it can be clearly seen that lag values of Ebay affects Facebook’s
prediction - hence proving a granger causual relationship.

This is further tried with Neural Network models.

6.2 Multiple Stocks

Another baseline with more than two stocks was created so that it would be
easier to compare with the LSTM model results. The results are,

4



From this linear regression results it can be seen the Facebook’s stock is
mainly dependent on E-Bay’s past values. Amazon, Costco or Cisco does not
have any linear relationship with Facebook’s future stock.

7 Method/analysis

7.1 MLP with Group Lasso

The input data is split into two - Current Company’s Stock and Competitor
Company’s stock and each of them are fed into a hidden layer separately (H11
and H12). This is concatenated to form a single hidden layer H1 (Ht in the
image) which is then passed again another optional layer H2 followed by the
output Y (xti in the below image). This can be seen from the below architecture,

The loss function would be based on group LASSO method and can be

5



represented as,

The idea is to check the weights W11 and W12 which is a part of the hidden
layer H11 and H12. If the weights W12 (Weights correspond to the competi-
tor company) are non-zero then there is a granger causality between the two
company’s stock prices.

7.2 MLP : Final Model Architecture

Input Layer: The input is split into two - current company stocks X1, other
stocks X2

Hidden Layer 1:

H11: No of Units 5
H12: No of Units 5
H1: No of Units 10

H11 = ReLU(W11 * X1 + B11)
H12 = ReLU(W12 * X2 + B12)

H1 = concatenate(H11, H12)

Hidden Layer 2
No of units: 15
H2 = ReLU(W2 * H1 + B2)

Output Layer
Y = W3 * H2 + B3
This Y is considered as the final output.

Following has been obtained from Tensor Board,

6



7.3 LSTM Implementation with Group Lasso

The objective is to predict the Facebook’s stock price at time T. The input has
different historic time units of competitors with up to a maximum K lags so
that the LSTM model could identify in itself how much of the lag values are
important for the final prediction.

Each unit is fed with the lag values of different companies’s stocks as shown,

For instance Red represents Facebook, Green represents E-Bay and Purple
represents Amazon. The input is fed in such a way because this would help in
interpreting weights for each of them specifically from the hidden unit weights.

For a hidden unit size 10, the weight matrix would look as

Say analyzing the values of green column would represent the importance
for E-Bay stock prices. For proper interpretability, group Lasso loss function
was implemented so that insignificant weights would tend to become zero. The
loss function had two parts, i) Mean Squared Error between the final prediction
and actual value ii) L1 distance of weights in the 10x3 Matrix. The overall loss
function is similar to the loss used for MLP above.

7.4 LSTM Implementation - Final Architecture

The final architecture used for prediction as obtained from Tensor board is
shown as,

7



The specification of final architecture is as follows,
Number of total time steps: 10
Number of hidden units H1: 5
Dimensions:
Initial hidden state H0: 10 x 1 (Random Initialization)
Input: 5 x 1
LSTM Unit:
H1 = tanh(W1*X + W2*H0 + bias)
Output = (W3 * H1 + bias)

This output at the last LSTM unit is used for loss calculation

8 Result analysis

8.1 Multi-Layered Perceptron

The model was tried with different epoch values from 50 to 1000, and optimal
values were seen for epoch 50 beyond which the loss started to increase.Also,
learning rate from 0.001,0.01,0.1,0.2 was tried for checking how the values con-
verge

The plot is an example for training and test error. Although there is fluctu-
ation for first few epochs, the error rate is convereged

Here is a small analysis on how the train and test errors were at the end of
50 epochs for different learning rate.

8



Learning Rate Train Loss Test Loss
0.001 3594.8403 18379.28
0.01 180.125 132.4917
0.1 80.74 223.22
0.2 83.26 221.26

Learning rate of 0.01 was found to be the best. Further analysis on various
other architectures are given below.

Most importantly, the W11 and W12 Matrix were analyzed to check if all of
the W12 were zero. Looking at the values, the Competitor share’s were non-zero
confirming there is aGranger Causal relationship

8.2 LSTM Method

The model was trained at various epochs up to 1000 and it was found that the
loss value saturates at 100 although the validation loss fluctuates slightly after
that.

9



Key: Orange = ’Validation’, Blue = ’Training’

Different learning rates and lambda (weights) values for the loss function
were tried to find the optimal value for faster convergence. The lambda value
was set to 2000 so that the weights converge faster to zero, and the learning rate
of 0.01 helped in better optimization without exploding or vanishing gradients
problem.

For different learning rates, it was seen that
After selecting the optimal parameters, the weights were analyzed to check

the Granger relationship,

For predicting the Facebook’s stocks, it was compared with the lag prices
of itself, E-Bay, Amazon, Costco and Cisco. Weights of greater than 0.01 was
set as the threshold for selecting significant stock. As it can be seen Amazon
and Cisco do not have any Granger causal relationship with Facebook’s stocks.
However, E-Bay and Costco has non-linear Granger causal relationship with
Facebook.

Although from the baseline Machine Learning only E-bay was found to be a
significant stock, LSTM model shows that Costco’s prices also help in predicting
future price of Facebook. This confirms that there is a non-linear relationship
between Costco and Facebook which has been identified by our LSTM model.

9 Additional Implementation - LSTM

1) Apart from required uni-directional LSTM of one hidden layer, we also tried
bi-directional LSTMS with multiple layers. Following is the architecture,

10



Since the model was complicated it was difficult to interpret the weights since
now there would be two sets of weights - one for each direction. Further, the
additional number of parameters caused more time for the model to converge,
and also making the loss function different which made it difficult to compare
to basic LSTM model.

We believe these constraints lead the model to not be the best approach for
current use case.

10 Improvement - MLP Method

10.1 Regularization

Lasso Regularization was applied to the loss function with different values of
lambda 0,0.1,0.5,0.9 to check the overall model performance

Lambda Train Loss Test Loss
0 134.56 234.67
0.1 280.125 232.4917
0.5 350.15 325.18
0.9 543.23 567.36

Based on the results, lambda value of 0.1 is selected for further analysis

10.2 Model Size and Layers

Different Hidden Unit sizes: Hidden layer 1 (5/10/20 Units) and Hidden Layer
2 (5/10/50) Units were tested to check the model performance
Different trials for hidden unit 1

No of Units Train Loss Test Loss
5 2098.5957 2355.7607
10 235.03624 242.80444
20 60.647392 123.99119

11



As the loss increases from unit size 20, the final units were considered to be 10

Different trials for hidden unit 2

No of Units Train Loss Test Loss
5 1175.067 750.74528
15 180.125 132.4917
25 80.125 123.99119

Hidden Layer 2 with 15 units are found to be optimal

10.3 Optimization Algorithms

Optimizers like Adam, RMS Prop, Adagrad and SGD with momentum was tried
and the top resuls are shown as follows,

Optimizer Train Loss Test Loss
Adam 180.125 132.4917
AdaGrad 3456.25 4563.24
RMS Prop 234.56 345.23

Adam is selected among all the other optimizers

11 Improvement - LSTM Method

11.1 Hidden Unit size

Analyzing different unit sizes for the num unit paramter for the basic RNN
module,

Hidden units Train Loss Test Loss
1 25378.0 47399.0
5 168.23 245.34
10 55.277 124.22
50 15.13 245.46

Hidden unit of size 10 had the best result performance on test data.

12 Conclusion

Analyzing two different methods using Multi-Layered Perception (MLP) and
LSTM using group Lasso technique, it seen that each of them have pros and
cons. While MLP is simple and more interpretable, it needs the number of lag
variables pre-specified. The LSTM, although a bit complex learns the number
of lag variables required for the final prediction once it is provided with K lag
values.

12



Thus, we would like to conclude saying that building the right model by se-
lecting the best hyper parameters helped in identifying Granger causal relation-
ship even in a constantly varying dataset like stock prices. This implementation
could be used in various other domains having more predictable outcomes to
identify such relationship with a very high accuracy.

References

[1] Alex Tank, Ian Covert, Ali Shojaie, Emily B. Fox. 2018. Neural Granger
Causality for Nonlinear Time Series 1-16

13


